Six1 Regulates Mouse Incisor Development by Promoting Dlx1/2/5 Expression

Author:

Luo S.Y.123,Wang S.123,Liu Z.X.123,Bian Q.14,Wang X.D.123ORCID

Affiliation:

1. Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

2. College of Stomatology, Shanghai Jiao Tong University, Shanghai, China

3. National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China

4. Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract

Tooth development is a complex process orchestrated by intricate gene regulatory networks, involving both odontogenic epithelium and ectomesenchyme. Six1, a pivotal transcription factor (TF), is involved in the development of the lower incisor. However, its precise role during incisor development and the molecular mechanisms underpinning its regulatory functions remain poorly understood. This study employs Six1 deletion mouse models to elucidate the critical regulatory role of Six1 in governing dental mesenchyme development. By performing single-cell RNA sequencing, we constructed a comprehensive transcriptome atlas of tooth germ development from the bud to bell stage. Our analyses suggest that the dental follicle and the dental papilla (DP) are differentiated from dental ectomesenchyme (DEM) and identify the key TFs underlying these distinct states. Notably, we show that Dlx1, Dlx2, and Dlx5 ( Dlx1/ 2/ 5) may function as the key TFs that promote the formation of DP. We further show that the deletion of Six1 perturbs dental mesenchyme development by impeding the transitions from DEM to DP states. Importantly, SIX1 directly binds to the promoters of Dlx1/ 2/ 5 to promote their co-expression, which subsequently leads to widespread epigenetic and transcriptional remodeling. In summary, our findings unveil Six1’s indispensable role in incisor development, offering key insights into TF-driven regulatory networks that govern dental mesenchyme cell fate transitions during tooth development.

Funder

National Natural Science Foundation of China

Opening Research fund from Shanghai Key Laboratory of Stomatology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine

Shanghai’s Top Priority Research Center

CAMS Innovation Fund for Medical Sciences

Shanghai Clinical Research Center for Oral Diseases

Shanghai Municipal Key Clinical Specialty

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3