A Multi-station Dental Plaque Microcosm (Artificial Mouth) for the Study of Plaque Growth, Metabolism, pH, and Mineralization

Author:

Sissons C.H.1,Cutress T.W.1,Hoffman M.P.1,Wakefield J.St.J.2

Affiliation:

1. Dental Research Unit, Health Research Council, PO Box 27007, Wellington, New Zealand

2. Wellington School of Medicine, University of Otago, Mein St., Wellington, New Zealand

Abstract

A plaque growth chamber was developed for long-term growth of five separate plaques from the same plaque or saliva sample under identical conditions of temperature and gas phase. Reagent addition and growth conditions for each plaque could be independently controlled, and each was accessible for sequential sampling and electrode insertion. Plaques were cultured for over six weeks on pellicle-coated Lux (TM) 25-mm diameter cover-slips at 35°C under 5% CO2 in N 2, and supplied with a medium containing 0.25% mucin (BMM) at 3.6 mL/h, and with periodic 5% sucrose. Electron microscopy and flora analysis of microcosm plaques showed that they had close similarities to reported characteristics of natural dental plaques. Diverse motile bacteria were present. Sucrose-induced Stephan pH curves and urea-induced pH rises were also similar to those reported for natural plaques. Changes in plaque urease, calcium, phosphate concentrations, and the flora were followed over five weeks in a plaque supplied with BMM containing additional 2.5 mmol/L calcium and 7.5 mmol/L phosphate. Despite this high environmental calcium phosphate concentration, there was no continuing increase in calcium levels, although plaque phosphate doubled. Urease levels fluctuated. Changes in the cultivable flora were minor. A urea-containing calcium phosphate/ mono-fluorophosphate pH 5 solution, applied for six min every two h for seven days, increased plaque calcium, phosphate, and fluoride to high levels. Thus, plaques grown over several weeks in the multi-station artificial mouth exhibited metabolic and pH behavior typical of natural plaques, could be analyzed during development, and the system allowed manipulation of environmental variables important in plaque pH control and calcification.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3