The Effects of Maturity and Dehydration Shrinkage on Resin-modified Glass-ionomer Restorations

Author:

Sidhu S.K.1,Sherriff M.2,Watson T.E.1

Affiliation:

1. Department of Conservative Dentistry (Floor 25)

2. Department of Dental Materials Science, United Medical & Dental Schools of Guy's and St Thomas' Hospitals, Guy's Hospital, London Bridge, London SE1 9RT, United Kingdom

Abstract

The dimensional change, including hygroscopic change, of adhesive dental materials is a clinically important topic, since excessive changes could cause debonding from tooth structure. The water balance of glass-ionomer cements arises mainly from their sensitivity to the environment; depending on the surroundings, they can gain or lose water, either of which can be potentially damaging. These effects become less noticeable as the cement ages. The effects of maturity of the newer resin-modified glass-ionomer materials and their responses to changes in moisture are unknown. Using confocal microscopy, we examined the effects of dehydration stress on the glass-ionomer/tooth interface in specimens of various degrees of maturity. Wedge-shaped cervical cavities in extracted teeth were restored with one of three resin-modified glass-ionomer restorative materials. The control specimens were restored with a conventional glass ionomer. The samples were left to mature, then sectioned and examined at 1 day, 1 wk, 1 mo, 3 mos, 6 mos, and 1 yr. After being sectioned, each specimen was examined immediately with a confocal microscope with water-immersion objectives so that the subsurface interfacial characteristics could be studied. The specimen was then allowed to dehydrate under the microscope, with further examinations at 15, 30, and 60 min. Generally, gap formation at the interface occurred within 15 min of dehydration. All materials showed a different pattern of gap change with maturity, probably due to the different setting mechanisms involved. All of them were susceptible to dehydration shrinkage up to 3 mos of maturity. At 6 mos and 1 yr, Fuji II and Fuji II LC showed insensitivity to dehydration. Vitremer and Photac-Fil showed less sensitivity to dehydration at 1 yr than at 6 mos. The results of this study of the maturing polymerized resin-modified cements have potential clinical implications in the handling of these materials; the addition of resin has not significantly reduced the glass ionomer's susceptibility to dehydration problems.

Publisher

SAGE Publications

Subject

General Dentistry

Reference18 articles.

1. Altman DG (1991). Practical statistics for medical research. London: Chapman and Hall, pp. 211,259-261.

2. Studies on the structure of light-cured Glass-ionomer cements

3. A Multiple Comparison Procedure for Comparing Several Treatments with a Control

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3