Effects of Treatment and Storage Conditions on Ceramic/Composite Bond Strength

Author:

Roulet J.F.1,Söderholm K.J.M.2,Longmate J.3

Affiliation:

1. Department of Operative Dentistry and Endodontics North, Freie Universitat Berlin, Fohrer Strasse 15, DW-1000 Berlin 65, Germany

2. Department of Dental Biomaterials, University of Florida, Gainesville

3. Department of Statistics, University of Florida, Gainesville

Abstract

During the past few years, the interest in using ceramic inlays and veneers has increased. New materials and methods have been introduced to bond these restorations to resinous materials. Since our knowledge of how to optimize such bonding is limited, the objective of this study was to test the hypothesis that various surface treatment variables and combinations of these variables affect the strength of the ceramic/composite interphase of ceramic inlays differently. The influences of material composition, surface-roughening method, silane treatment, silane heat treatment, and storage condition on bond strength were investigated. Three ceramics (Dicor®, Mirage®, Vitabloc®), three surface-roughening methods (etching, sandblasting, grinding), three silane treatments (γ-methacryloxypropyltrimethoxysilane [MPS], MPS + paratoluidine, vinyltrichlorosilane), two heat treatments (20°C for 60 s, 100°C for 60 s), and two storage conditions (24-hour dry, one yr in water at 37°C) were studied. For each of the 108 combinations, five specimens were tested. Ceramic cylinders were treated according to group assignment and bonded to blocks of the same ceramic material with a dual-cured resin. The shear bond strength was determined, and the experimental factors were evaluated by analysis of variance. The results showed that surface-roughening method had the strongest effect on bond strength, while ceramic selection had the least significant effect. Of the surface-roughening methods, etching was associated with higher bond strength values than either sandblasting or grinding. Bond strength to etched ceramics remained constant after water storage, while the bond strength to both sandblasted and ground specimens decreased by from 50 to 75% compared with dry storage. Heating the MPS-coated specimens to 100°C resulted in bond strength twice as high than if no heating was used. Mechanical interlocking appears to be the key factor influencing the ceramic-composite bond strength.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3