Contributions of Three Glucosyltransferases to Sucrose-dependent Adherence of Streptococcus mutans

Author:

Ooshima T.1,Matsumura M.2,Hoshino T.2,Kawabata S.3,Sobue S.2,Fujiwara T.2

Affiliation:

1. Department of Pedodontics, -u.ac.jp

2. Department of Pedodontics

3. Department of Oral Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamada-Oka, Suita, Osaka 565-0871, Japan

Abstract

Streptococcus mutans produces 3 types of glucosyltransferase (GTF), whose cooperative action is considered to be essential for its cellular adherence to the tooth surface. However, the precise mechanisms for synthesizing adhesive glucans and the specific roles of each GTF in cellular adherence to smooth surfaces have not been elucidated. In the present study, seven types of isogenic mutants of S. mutans MT8148 lacking GTFB, GTFC, and/or GTFD activities were constructed by inactivation of the genes encoding GTFB, GTFC, and/or GTFD. Furthermore, recombinant GTFB, GTFC, and GTFD were prepared from Escherichia coli cells harboring recombinant plasmids containing each of the gtf genes. Using these GTF-deficient mutants and rGTFs, we reconstituted sucrose-dependent adherence of S. mutans resting cells and examined the role of each GTF in vitro. The highest level of sucrose-dependent adherence was found at the ratio of 20 rGTFB:l rGTFC:4 rGTFD in both the resting cells of GTF-deficient mutants and insoluble glucan synthesized by rGTFs. Moreover, when rGTFC and rGTFD were both present at concentrations of 1.5 mU and 6 mU, respectively, the insoluble glucan synthesized from sucrose by the rGTFs showed a high level of adhesiveness to smooth surfaces, even without rGTFB. These results suggest that the presence of all three GTFs at the optimum ratio is necessary for sucrose-dependent adherence of S. mutans, and that GTFC and GTFD may play significant roles in the synthesis of adhesive and insoluble glucan from sucrose.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3