Endothelial Insulin Resistance Exacerbates Experimental Periodontitis

Author:

Zeze T.1,Shinjo T.1ORCID,Sato K.1,Nishimura Y.1,Imagawa M.1,Chen S.1,Ahmed A.-k.1,Iwashita M.1,Yamashita A.1,Fukuda T.1,Sanui T.1,Park K.2,King G.L.2,Nishimura F.1

Affiliation:

1. Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan

2. Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA

Abstract

Epidemiological studies suggest that the severity of periodontitis is higher in people with diabetes than in healthy individuals. Insulin resistance might play a crucial role in the pathogenesis of multiple diabetic complications and is reportedly induced in the gingiva of rodents with type 2 diabetes; however, the molecular mechanisms underlying the pathogenesis of diabetes-related periodontitis remain unclear. Therefore, we aimed to investigate whether endothelial insulin resistance in the gingiva may contribute to the pathogenesis of periodontitis as well as elucidate its underlying molecular mechanisms. We demonstrated that insulin treatment downregulated lipopolysaccharide (LPS)–induced or tumor necrosis factor α (TNFα)–induced VCAM1 expression in endothelial cells (ECs) via the PI3K/Akt activating pathway, resulting in reduced cellular adhesion between ECs and leukocytes. Hyperglycemia-induced selective insulin resistance in ECs diminished the effect of insulin on LPS- or TNFα-stimulated VCAM1 expression. Vascular endothelial cell–specific insulin receptor knockout (VEIRKO) mice exhibited selective inhibition of the PI3K/Akt pathway in the gingiva and advanced experimental periodontitis-induced alveolar bone loss via upregulation of Vcam1, Tnfα, Mcp-1, Rankl, and neutrophil migration into the gingiva compared with that in the wild-type (WT) mice despite being free from diabetes. We also observed that insulin-mediated activation of FoxO1, a downstream target of Akt, was suppressed in the gingiva of VEIRKO and high-fat diet (HFD)–fed mice, hyperglycemia-treated ECs, and primary ECs from VEIRKO. Further analysis using ECs transfected with intact and mutated FoxO1, with mutations at 3 insulin-mediated phosphorylation sites (T24A, S256D, S316A), suggested that insulin-mediated regulation of VCAM1 expression and cellular adhesion of ECs with leukocytes was attenuated by mutated FoxO1 overexpression. These results suggest that insulin resistance in ECs may contribute to the progression of periodontitis via dysregulated VCAM1 expression and cellular adhesion with leukocytes, resulting from reduced activation of the PI3K/Akt/FoxO1 axis.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3