Bio-based Non-estrogenic Dimethacrylate Dental Composite from Cloves

Author:

Sun Y.1,Sun L.1,Hong L.2,Li J.1,Tang S.1,Zhao C.1

Affiliation:

1. Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, People’s Republic of China

2. Endodontics Department of Stomatological Hospital, Jilin University, Changchun, China

Abstract

Bisphenol A (BPA), as an endocrine disruptor derived from petroleum-based chemicals, has been prohibited by several regulatory agencies for use in a wide variety of consumer products. For the sake of reducing human exposure to BPA derivatives and in the context of sustainability, it is far-reaching to develop high-performance and low-toxic materials from bountiful biomass sources. The objective of this work was to synthesize 2 bio-based dimethacrylate monomers, 2,2′-dially-4,4′-dimethoxy-5,5′-diglycerolate acrylatediphenylmethane (BEF-EA) and 2,2′-dially-4,4′-dimethoxy-5,5′-diglycerolate methacrylatediphenylmethane (BEF-GMA), using eugenol as the raw material. The estrogenic activity of bio-based bisphenol 2,2′-dially-4,4′-dimethoxy-5,5′-dihydroxydiphenylmethane (BEF) was evaluated and compared with estrogen and commercial bisphenols. After photopolymerization of the di(meth)acrylates diluted with tri(ethyleneglycol) dimethacrylate (TEGDMA), bio-based visible light-curing materials were prepared, and their properties were systematically investigated. Notably, di(meth)acrylates BEF-GMA and BEF-EA derived from these nonestrogenic bio-based phenols exhibited improved biocompatibility and low viscosity (down to 220–280 Pa.s). BEF-GMA and BEF-EA resin matrix exhibits lower volumetric polymerization shrinkage (about 8.5%), high photopolymerization reactivity (>50% in 60 s), and mechanical properties (fracture energy >5.5 N mm; flexural strength of 87–91 MPa, etc), which were comparable or superior to commercial Bis-GMA. The respective bio-based composites still exhibit adequate properties. Therefore, introducing eugenol-based visible light-curable dimethacrylate monomers into dental materials is a potential strategy to establish green sustainability and biocompatible dental materials without BPA.

Funder

State Grid Corporation of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3