MALT1 Inhibition of Oral Carcinoma Cell Invasion and ERK/MAPK Activation

Author:

Chiba T.1,Soeno Y.2,Shirako Y.2,Sudo H.1,Yagishita H.3,Taya Y.2,Kawashiri S.4,Okada Y.5,Imai K.1

Affiliation:

1. Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan

2. Department of Pathology, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan

3. Division of Oral Diagnosis, Dental and Maxillofacial Radiology and Oral Pathology Diagnostic Services, Nippon Dental University Hospital, Tokyo, Japan

4. Department of Oral Surgery, School of Medicine, Kanazawa University, Kanazawa, Japan

5. Department of Pathology, School of Medicine, Keio University, Tokyo, Japan

Abstract

The expression of mucosa-associated lymphoid tissue 1 (MALT1) that activates nuclear factor (NF)–κB in lymphocyte lineages is rapidly inactivated in oral carcinoma cells at the invasive front and the patients with worst prognosis. However, its mechanism to accelerate carcinoma progression remains unknown, and this study was carried out to examine the role in invasion. HSC2 oral carcinoma cells stably expressing wild-type MALT1 (wtMALT1) reduced the invasion of basement membrane matrices and collagen gels, and the dominant-negative form (∆MALT1)–expressing cells aggressively invaded into collagen gels. MALT1 decelerated proliferation and migration of cells and downregulated expression of matrix metalloproteinase 2 and 9, which were confirmed by short interfering RNA transfections. Reporter assays and immunoblot analysis showed that MALT1 does not affect the NF-κB pathway but inhibits ERK/MAPK activation. This was confirmed by endogenous MALT1 expression in oral carcinoma cell lines. Orthotopic implantation of ∆MALT1-expressing HSC2 cells in mice grew rapid expansive and invasive tongue tumors in contrast to an absence of tumor formation by wtMALT1-expressing cells. These results demonstrate that MALT1 suppresses oral carcinoma invasion by inhibiting proliferation, migration, and extracellular matrix degradation and that the ERK/MAPK pathway is a target of MALT1 and further suggests a role as a suppressor of carcinoma progression.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3