Immunolocalization of Fibronectin during Reparative Dentinogenesis in Human Teeth after Pulp Capping with Calcium Hydroxide

Author:

Yoshiba K.1,Yoshiba N.1,Nakamura H.2,Iwaku M.1,Ozawa H.2

Affiliation:

1. Department of Operative Dentistry and Endodontics, Niigata University School of Dentistry, 5274, Gakkochodori 2-bancho, Niigata 951, Japan

2. Department of Oral Anatomy, Niigata University School of Dentistry, 5274, Gakkochodori 2-bancho, Niigata 951, Japan

Abstract

Exposed dental pulp is known to possess the ability to form a hard-tissue barrier (dentin bridge). The exact mechanisms by which pulp cells differentiate into odontoblasts in this process are unknown. Fibronectin has been demonstrated to play a crucial role in odontoblast differentiation during tooth development. This study tested the hypothesis that fibronectin is involved in the initial stages of replacement odontoblast differentiation and reparative dentin formation. We observed its immunohistochemical localization during dentin bridge formation in human teeth, after pulp was capped with calcium hydroxide [Ca(OH)2]. One day after the capping, precipitation of crystalline structures was observed at the TEM level in association with cell debris at the interface between the superficial necrotic zone and underlying pulp tissue. This layer of dystrophic calcification showed positive reaction for fibronectin, and pulp cells appeared to be closely associated with this layer, seven to ten days postoperatively. At 14 days, an alignment of cells, some of which were elongated and odontoblast-like, was observed adjacent to the fibroriectin-positive irregular matrix. Between the cells, corkscrew fiber-like fluorescence was visible. At 28 days, the irregular fibrous matrix was followed by the formation of tubular dentin-like matrix lined with odontoblast-like cells. Therefore, it would seem that fibronectin associated with the initially formed calcified layer might play a mediating role in the differentiation of pulp cells into odontoblasts during reparative dentinogenesis, after pulp was capped with Ca(OH)2.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3