Targeting the DNA Damage Response in OSCC with TP53 Mutations

Author:

Lindemann A.1,Takahashi H.1,Patel A.A.1,Osman A.A.1,Myers J.N.1

Affiliation:

1. Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Abstract

Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer worldwide and in the United States. OSCC remains a major cause of morbidity and mortality in patients with head and neck cancers. Tobacco and alcohol consumption alone or with chewing betel nut are potential risk factors contributing to the high prevalence of OSCC. Multimodality therapies, including surgery, chemotherapy, biologic therapy, and radiotherapy, particularly intensity-modulated radiotherapy (IMRT), are the current treatments for OSCC patients. Despite recent advances in these treatment modalities, the overall survival remains poor over the past years. Recent data from whole-exome sequencing reveal that TP53 is commonly mutated in human papillomavirus–negative OSCC patients. Furthermore, these data stressed the importance of the TP53 gene in suppressing the development and progression of OSCC. Clinically, TP53 mutations are largely associated with poor survival and tumor resistance to radiotherapy and chemotherapy in OSCC patients, which makes the TP53 mutation status a potentially useful molecular marker prognostic and predictive of clinical response in these patients. Several forms of DNA damage have been shown to activate p53, including those generated by ionizing radiation and chemotherapy. The DNA damage stabilizes p53 in part via the DNA damage signaling pathway that involves sensor kinases, including ATM and ATR and effector kinases, such as Chk1/2 and Wee1, which leads to posttranscriptional regulation of a variety of genes involved in DNA repair, cell cycle control, apoptosis, and senescence. Here, we discuss the link of TP53 mutations with treatment outcome and survival in OSCC patients. We also provide evidence that small-molecule inhibitors of critical proteins that regulate DNA damage repair and replication stress during the cell cycle progression, as well as other molecules that restore wild-type p53 activity to mutant p53, can be exploited as novel therapeutic approaches for the treatment of OSCC patients bearing p53 mutant tumors.

Funder

National Institute of Dental and Craniofacial Research

University of Texas MD Anderson Cancer Center

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3