Odontogenic Potential of Post-natal Oral Mucosal Epithelium

Author:

Nakagawa E.12,Itoh T.12,Yoshie H.12,Satokata I.12

Affiliation:

1. Division of Developmental Biology and

2. Division of Periodontology, Department of Oral Biological Sciences, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Niigata 951-8514, Japan

Abstract

A bioengineered tooth would provide a powerful alternative to currently available clinical treatments. Previous experiments have succeeded in bioengineering teeth using tooth germs from animal embryos. However, the ultimate goal is to develop a technology which enables teeth to be regenerated with the use of autologous cells. To pursue this goal, we re-associated the palatal epithelium from young mice with the odontogenic dental mesenchyme and transplanted the re-associated tissues into mouse kidney capsules. Morphologically defined teeth were formed from the re-associated cultured palatal epithelial cell sheets from mice aged up to 4 wks, but no tooth was formed when the palatal epithelium from mice after 2 days of age was directly re-associated. Our results demonstrated that post-natal non-dental oral mucosal epithelium can be used as a substitute for dental epithelium, and that epithelial cell sheet improves the ability of the oral epithelium of older mice to differentiate into dental epithelium.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3