Bone Regeneration at Dental Implant Sites with Suspended Stem Cells

Author:

Zheng R.C.1,Park Y.K.2,Cho J.J.3,Kim S.K.4,Heo S.J.4,Koak J.Y.4,Lee J.H.5

Affiliation:

1. Department of Prosthodontics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea

2. Department of Dental Research Institute, Brain Korea 21, Seoul National University, Seoul, South Korea

3. Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul, South Korea

4. Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea

5. Department of Prosthodontics, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea

Abstract

During the maintenance of bone marrow-derived mesenchymal stem cells (BMMSCs), suspended cells are discarded normally. We noted the osteogenic potential of these cells to be like that of anchorage-dependent BMMSCs. Therefore, we characterized suspended BMMSCs from rabbit bone marrow by bioengineering and applied the suspended BMMSCs to double-canaled dental implants inserted into rabbits. After primary isolation of BMMSCs, we collected the suspended cells during primary culture on the third day. The cells were transferred and maintained on an extracellular-matrix-coated culture plate. The cells were characterized and compared with BMMSCs by colony-forming-unit fibroblast (CFU-f) and cell proliferation assay, fluorescence-activated cell sorter (FACS), in vitro multipotency, and reverse transcription polymerase chain reaction (RT-PCR). We also analyzed the osteogenic potential of cells mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) and transplanted into immunocompromised mice. We compared the viability and proliferation of the suspended BMMSCs and BMMSCs on the titanium implant surface and observed cell morphology. Then, the cells mixed with HA/TCP were applied to the double-canaled implants during installation into rabbit tibia. Four weeks later, we analyzed bone formation inside the canal by histomorphometry. The suspended cells showed higher CFU-f on the extracellular matrix (ECM)-coated culture plate and similar results of proliferation capacity compared with BMMSCs. The cells also showed osteogenic, adipogenic, and chondrogenic ability. The suspended cells showed levels of attachment survival and proliferation on the surfaces of titanium implant discs to be higher than or similar to those of BMMSCs. The suspended cells as well as BMMSCs showed stronger bone formation ability in both upper and lower canals of the implants compared with controls on double-canaled implants inserted into rabbit tibia. In this study, we showed that suspended cells after primary BMMSC isolation have bone regeneration capacity like that of BMMSCs, not only in vitro but also in vivo. ECM was valuable for propagation of MSCs for cell-based bone regeneration. Therefore, the suspended cells could also be useful tools for bone regeneration after implant surgery.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3