Affiliation:
1. Department of Oral Biology and Pathology, School of Dental Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794
Abstract
Similar to Streptococcus mutans, buffer suspensions of Lactobacillus casei, Lactobacillus plantarum, and Fusobacterium nucleatum all undergo cell lysis when treated with the lysozyme-protease-inorganic monovalent anion antibacterial system. For Lactobacillus species treated with lysozyme and proteases at pHs of 4 and 5.3, lysis resulted when a lytic activating concentration of bicarbonate anion followed enzyme treatment. Furthermore, synergistic lysis of these bacteria was noted when lysozyme-protease treatment was followed by bicarbonate anion used in combination with chloride or fluoride anions. Noteworthy, the halides were not active in promoting lysis when used by themselves in the absence of bicarbonate. For F. nucleatum suspended at pH 6.9, lysis was dependent upon the ionic strength of the buffer and resulted when lysozyme-protease treatment of the organism was followed by 100 mmol/L bicarbonate activation. When lysozyme and proteases were omitted from the incubation mixtures and replaced by stimulated whole saliva, pH 5.3, lysis was observed only with L. plantarum and S. mutans, but not with L. casei. The latter could be lysed, however, if suspended in saliva which was diluted several-fold with distilled water. In experiments where lysozyme was selectively depleted from whole saliva by immunoadsorption affinity chromatography, the great majority of the lysis capability of the saliva for L. plantarum was lost, although a significant degree of lysis appeared to be due to salivary factors other than lysozyme. F. nucleatum was also found to lyse in saliva at neutral pH, suggesting that both Gram-positive and Gram-negative oral bacteria may be susceptible to this antibacterial system in vivo.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献