Molecular Mechanism of Mucin Secretion: I. The Role of Intragranular Charge Shielding

Author:

Verdugo P.1,Deyrup-Olsen I.2,Aitken M.3,Villalon M.1,Johnson D.1

Affiliation:

1. Center for Bioengineering, WD-12, University of Washington, Seattle, Washington 98195

2. Department of Zoology, WD-12, University of Washington, Seattle, Washington 98195

3. Department of Medicine, WD-12, University of Washington, Seattle, Washington 98195

Abstract

Mucus is an ubiquitous polymer hydrogel that functions as a protective coat on the surface of integument and mucosa of species ranging from simple animals (such as coelenterates) to mammals. The polymer matrix of mucus is made out of long-chain glycoproteins called mucins that are tangled together, forming a randomly woven, highly polyionic network (Lee et al., 1977; Verdugo et al., 1983). Mucin-containing granules, produced by mammalian goblet cells in vitro, undergo massive post-exocytotic swelling. Their swelling kinetics is similar to the swelling of condensed artificial polymer gels (Verdugo, 1984; Tanaka and Fillmore, 1979). We had proposed that mucins must be condensed in the secretory granule and expand by hydration during or after exocytosis (Verdugo, 1984; Tam and Verdugo, 1981). However, the polyionic charges of mucins prevents condensation unless they (the mucins) are appropriately shielded. The present experiments were designed to assert the presence of an intragranular shielding cation and its role in secretion. Giant mucin granules of the slug (Ariolimax columbianus) are released intact from mucus-secreting cells of the slug's skin. They burst spontaneously outside the cell, forming, upon hydration, the typical slug mucus (Deyrup-Olsen et al., 1983). We report here that these granules contain from 2.5 to 3.6 moles calcium/kg dry material, and that calcium is released from the granules immediately before the burst that discharges their secretory product. Therefore, we propose that calcium functions as a shielding cation of poly ionic mucins, and that the bursting discharge of mucins from secretory granules must result from the release of calcium from the intragranular compartment. Calcium release would unshield the polyionic charges of mucins, driving the mutual repulsion of polymer chains and triggering a quick expansion of the mucin network (resembling a Jack-in-the-box mechanism). The existence of a poly ion associated with a shielding cation seems to be a common feature in a large variety of secretory granules. Thus, the proposed spring-loaded release system based on the unshielding of a condensed polyion may serve as a general model for explaining the molecular mechanism of product release in secretion.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3