High-Performance Dental Composites Based on Hierarchical Reinforcements

Author:

Hu C.12,Lin Y.Q.3,Yang Y.J.12,Wang L.L.4,Liang H.M.5,Wu J.R.5,He G.X.12,Shao L.Q.12

Affiliation:

1. Nanfang Hospital, Southern Medical University, Guangzhou, China

2. Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, China

3. Shenzhen Luohu People’s Hospital, Shenzhen, China

4. Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China

5. Stomatological Hospital, Southern Medical University, Guangzhou, China

Abstract

Use of high-performance fibers such as poly(p-phenylene-2,6-benzobisoxazole) (PBO) improves the mechanical properties of dental fiber-reinforced composites (FRCs). However, the surfaces of high-performance fibers are relatively inert, and the interface with the resin matrix is poor. This has become a limitation restricting the performance of PBO FRCs in dentistry. Nanomaterials were introduced onto PBO fibers to construct various hierarchical reinforcements to obtain a dental FRC with higher flexural performance and optimized interface bonding. Four hierarchical reinforcements were constructed: PBO-ZnO nanoparticles (NPs), PBO-ZnO nanowires (NWs), PBO-ZnO NPs–cage silsesquioxane (POSS), and PBO-ZnO NWs-POSS. Performance following this optimized method was evaluated at macroscale and microscale levels, including measurement of the interfacial properties and mechanical properties of FRCs. The physicochemical characteristics of PBO fibers before and after modification were measured to determine the interfacial bonding mechanisms and to verify the connection between the microinterface and macromechanical properties. The cytotoxicity of the preferred PBO FRC was evaluated using the CCK8 assay. In comparison to other designs, the interfacial shear strength (IFSS) of PBO-ZnO NWs-POSS was the highest (29.31 ± 2.40 MPa). The corresponding FRC had the highest flexural strength under a static load (925.0 ± 39.2 MPa), the flexural modulus (39.39 ± 1.41 GPa) was equivalent to that of human dentin, and in vitro cytotoxicity was acceptable. The interfacial bonding mechanisms of PBO-ZnO NWs-POSS resulted from mechanical interlocking, chemical bonds, hydrogen bonds, and van der Waals forces. In summary, the PBO-ZnO NWs-POSS hierarchical reinforcement was introduced in dental FRCs and showed remarkable enhancement of the IFSS and flexural properties. We verified that the PBO-ZnO NWs-POSS hierarchical reinforcement was successful. This PBO FRC may be applied in dentistry as a new option for endodontic posts. Our study provides an interface design strategy for developing high-performance FRCs reinforced with high-performance fibers for dental applications.

Funder

china postdoctoral science foundation

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3