Expression of Phosphate Transporters during Dental Mineralization

Author:

Merametdjian L.123,Beck-Cormier S.12,Bon N.12,Couasnay G.12,Sourice S.12,Guicheux J.123,Gaucher C.45,Beck L.12

Affiliation:

1. INSERM, U1229, RMeS, Nantes, France

2. Université de Nantes, UMR_S1229, UFR Odontologie, Nantes, France

3. CHU Nantes, PHU 4 OTONN, Nantes, France

4. Dental School, University Paris Descartes, PRES Sorbonne Paris Cité, Montrouge, France

5. AP-HP, Odontology Department, Hôpital Albert Chenevier, GHHM, Créteil, France

Abstract

The importance of phosphate (Pi) as an essential component of hydroxyapatite crystals suggests a key role for membrane proteins controlling Pi uptake during mineralization in the tooth. To clarify the involvement of the currently known Pi transporters (Slc17a1, Slc34a1, Slc34a2, Slc34a3, Slc20a1, Slc20a2, and Xpr1) during tooth development and mineralization, we determined their spatiotemporal expression in murine tooth germs from embryonic day 14.5 to postnatal day 15 and in human dental samples from Nolla stages 6 to 9. Using real-time polymerase chain reaction, in situ hybridization, immunohistochemistry, and X-gal staining, we showed that the expression of Slc17a1, Slc34a1, and Slc34a3 in tooth germs from C57BL/6 mice were very low. In contrast, Slc34a2, Slc20a1, Slc20a2, and Xpr1 were highly expressed, mostly during the postnatal stages. The expression of Slc20a2 was 2- to 10-fold higher than the other transporters. Comparable results were obtained in human tooth germs. In mice, Slc34a2 and Slc20a1 were predominantly expressed in ameloblasts but not odontoblasts, while Slc20a2 was detected neither in ameloblasts nor in odontoblasts. Rather, Slc20a2 was highly expressed in the stratum intermedium and the subodontoblastic cell layer. Although Slc20a2 knockout mice did not show enamel defects, mutant mice showed a disrupted dentin mineralization, displaying unmerged calcospherites at the mineralization front. This latter phenotypical finding raises the possibility that Slc20a2 may play an indirect role in regulating the extracellular Pi availability for mineralizing cells rather than a direct role in mediating Pi transport through mineralizing plasma cell membranes. By documenting the spatiotemporal expression of Pi transporters in the tooth, our data support the possibility that the currently known Pi transporters may be dispensable for the initiation of dental mineralization and may rather be involved later during the tooth mineralization scheme.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3