Molecular Genetics of Tooth Morphogenesis and Patterning: The Right Shape in the Right Place

Author:

Tucker A.S.1,Sharpe P.T.1

Affiliation:

1. Department of Craniofacial Development, UMDS, Floor 28 Dental School, Guy's Hospital, London Bridge, London SE1 9RT, UK

Abstract

Development of the mammalian tooth has for many years served as a useful model system for the study of cell-cell interactions in organogenesis. Early development of teeth (tooth buds) shows many morphological and molecular similarities with early development of other organs such as the lung, hair, kidney, etc. There has been much progress toward understanding epithelial/mesenchymal cell signaling in tooth germ formation. Advances in understanding the formation of different shapes of teeth (morphogenesis) at their correct positions in the jaws (patterning) has, until recently, been less forthcoming. We review here the latest ideas on the control of odontogenic patterning and morphogenesis. The stages of early tooth development are well-defined histologically and have been described in numerous textbooks. The progression from localized thickenings of oral epithelium to bud, cap, and bell stages provides an adequate description of the gross morphological changes seen in the epithelial cells of early developing tooth germs. Less obvious are the concomitant changes taking place in the dental (ecto)mesenchymal cells which originate from the cranial neural crest and which condense around the tooth bud epithelium. However, it is very clear that these mesenchymal cells are equal partners with epithelium during the early stages of tooth germ formation and undergo complex changes which, although not obvious histologically, are revealed with molecular (gene) probes. Genes identified as being important for the early communication between the epithelial and ectomesenchymal cells mainly comprise those which code for proteins which act as secreted signals between the cells (ligands) and those that code for nuclear proteins that act to control gene expression in response to the signals. Little is presently known about the changes in structural proteins such as cell adhesion molecules which are involved in mediating the physical interactions between cells and generating the morphological changes.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3