Effect of Collagen-Reactive Functional Monomer on Etch-and-Rinse Adhesives

Author:

Yu S.Y.1,He X.1,Tian Z.L.1,Li K.X.2,Chen H.1,Wang H.M.1,Shi Z.S.2,Zhu S.1,Cui Z.C.2

Affiliation:

1. Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun, China

2. State Key Laboratory of Supramolecular Structures and Materials, College of Chemistry, Jilin University, Changchun, China

Abstract

In this study, we evaluated a novel functional monomer (4-formylphenyl acrylate [FA]) that can specifically and covalently bind to the dentin collagen matrix as a potential alternative hydrophobic diluent-like monomer for improving the durability of dentin bonding. Experimental adhesives with different FA contents (0%, 10%, 20%, and 30%) were evaluated as partial substituents for the hydrophilic monomer 2-hydroxyethyl methacrylate, with the commercial adhesive One-Step (Bisco, Inc.) employed as the positive control. Their degree of conversion, viscosity, hydrophobicity, mechanical properties, and water absorption/solubility were measured as the comprehensive characterization. In situ zymographic assays were performed to determine the extent to which FA inhibits the endogenous hydrolytic activity of dentin. Finally, the bonding performances of the novel adhesives were evaluated with microtensile strength tests and scanning electron microscopy. The results showed that the incorporation of FA significantly improved the mobility of experimental adhesives attributable to the dilution property of FA. In contrast to the possible compromised rate of polymerization by hydroxyethyl methacrylate, FA exhibited typical characteristics of favorable copolymerization with polymerizable monomers in adhesives and improved the degree of conversion of experimental adhesives. The rigidity and hydrophobic properties of the phenyl framework of the FA molecule conferred superior mechanical properties and hydrolysis resistance to the novel experimental adhesives. An inhibitory effect on gelatinolytic activities within the hybrid layer was also observed in the in situ zymographic assays, even at a low FA concentration (10%). In conjunction with the significantly improved infiltration found via scanning electron microscopy, the experimental adhesives containing FA possessed significantly better-maintained microtensile strength, even after aging. Thus, the incorporation of this novel monomer endowed the experimental adhesives with multiple enhanced functionalities. These remarkable advantages highlight the suitability of the monomer for further applications in clinical practice.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3