Generation of Amelx-iCre Mice Supports Ameloblast-Specific Role for Stim1

Author:

Said R.12,Zheng L.3,Saunders T.4ORCID,Zeidler M.4,Papagerakis S.56,Papagerakis P.127

Affiliation:

1. Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada

2. College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada

3. Department of Orthodontics, School of Dentistry, Ohio State University, Columbus, OH, USA

4. Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, USA

5. Department of Otolaryngology–Head and Neck Surgery, School of Medicine, University of Michigan, Ann Arbor, MI, USA

6. Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada

7. Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA

Abstract

The identification and targeting of the molecular pathways regulating amelogenesis is an ongoing challenge in dental research, and progress has been restricted by the limited number of genetic tools available to study gene function in ameloblasts. Here, we generated 4 transgenic Cre-driver mouse lines that express improved Cre ( iCre)–recombinase from the locus of the mouse ameloblast-specific gene amelogenin X ( Amelx-iCre) with a large (250-kb) bacterial artificial chromosome DNA vector. All 4 Amelx-iCre transgenic lines were bred with ROSA26 reporter mice to characterize the iCre developmental pattern with the LacZ gene encoding β-galactosidase enzyme activity assay and Cre protein immunohistochemistry. From the 4 generated transgenic lines, 2 were selected for further analysis because they expressed a high amount of Cre recombinase exclusively in ameloblasts and showed developmental stage- and cell-specific β-galactosidase activity mimicking the endogenous amelogenin expression. To test the functionality of the selected transgenic models, we bred the 2 Amelx-iCre mice lines with stromal interaction molecule 1 ( Stim1) floxed mice to generate ameloblast-specific Stim1 conditional knockout mice ( Stim1 cKO). STIM1 protein serves as one of the main calcium sensors in ameloblasts and plays a major role in enamel mineralization and ameloblast differentiation. Amelx-iCre mice displayed exclusive CRE-mediated recombination in incisor and molar ameloblasts. Stim1 cKO mice showed a severely defected enamel phenotype, including reduced structural integrity concomitant with increased attrition and smaller teeth. The phenotype and genotype of the Amelx-iCre/Stim1 cKO showed significant differences with the previously reported Ker14- Cre/ Stim1 cKO, highlighting the need for cell- and stage-specific Cre lines for an accurate phenotype-genotype comparison. Furthermore, our model has the advantage of carrying the entire Amelx gene locus rather than being limited to an Amelx partial promoter construct, which greatly enhances the stability and the specificity of our Cre expression. As such, the Amelx-iCre transgenic lines that we developed may serve as a powerful tool for targeting ameloblast-specific gene expression in future investigations.

Funder

university of michigan

university of saskatchewan

jordan university of science and technology

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3