Affiliation:
1. Department of Dental Research, Box 611, Rochester Caries Research Center, University of Rochester Medical Center, Rochester, New York 14642
Abstract
GlucosyltransferaseB, GtfC, and GtfD were purified by hydroxyapatite column chromatography, followed by ultrafiltration from the culture supernatant fluids of three Streptococcus milleri constructs (gift from Dr. H.K. Kuramitsu) which harbored individual gtf genes of Streptococcus mutans GS5. GtfB, GtfC, and GtfD were enzymatically active both in solution and in an experimental pellicle (HA-CWS-Gtf) formed by adsorbing Gtf onto the surface of clarified human whole saliva (CWS)-coated hydroxyapatite (HA). The Km values for sucrose for all three enzymes were lower when the enzyme was adsorbed to a surface, compared with when it was in solution. In solution phase assays, and in the absence of primer dextran, glucan production was enhanced 75% when both GtfB and GtfD were present in the reaction mixture, compared with the sum of the individual enzyme activities (p < 0.005). This enhancement did not occur when GtfC was additionally present, or when the GtfB + GtfD enzyme pair was adsorbed onto HA-CWS. In additional experiments, glucan formed by GtfB or GtfC, but not by GtfD, on a HA-CWS-Gtf surface increased adherence of Streptococcus mutans GS5 and Streptococcus sobrinus 6715 by seven- to nine-fold compared with adherence when no glucan was present on the pellicle surface (p < 0.001). Further, treatment of the HA-CWS-GtfB-glucan or HA-CWS-GtfC-glucan pellicle with a-1,6 dextranase significantly reduced adherence of both streptococcal strains (p < 0.001). These results show that GtfB, GtfC, and GtfD are enzymatically active in an adsorbed state and that the nature of their product glucan can influence the adherence of cariogenic oral streptococci to an experimental pellicle.
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献