Touch-Cure Polymerization at the Composite Cement-Dentin Interface

Author:

Yoshihara K.12,Nagaoka N.3,Benino Y.4,Nakamura A.5,Hara T.5,Maruo Y.6,Yoshida Y.7,Van Meerbeek B.8

Affiliation:

1. National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Takamatsu, Kagawa, Japan

2. Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Department of Pathology & Experimental Medicine, Okayama, Japan

3. Okayama University Dental School, Advanced Research of Center for Oral and Craniofacial Science, Okayama, Japan

4. Okayama University, Graduate School of Environmental and Life Science, Okayama, Japan

5. National Institute for Materials Science (NIMS), Electron Microscopy Analysis Station, Tsukuba, Ibaraki, Japan

6. Department of Occlusion and Removable Prosthodontics, Okayama University Hospital, Okayama, Japan

7. Hokkaido University, Faculty of Dental Medicine, Department of Biomaterials and Bioengineering, Sapporo, Hokkaido, Japan

8. KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium

Abstract

Ceramic restorations are often adhesively luted onto the tooth prep. The so-called touch-cure concept was developed to yield optimum polymerization of composite cement at the restoration-cement-tooth interface for immediate bond stabilization. Although this touch cure is theorized to initiate polymerization at the interface when the accelerator in the primer makes contact with the cement, this process has not yet been proven. This study aimed to elucidate the mechanism of touch cure by measuring the degree of conversion (DC) of composite cement applied with or without an accelerator-containing tooth primer (TP) versus an accelerator-free primer using real-time Fourier-transform infrared spectroscopy (RT-FTIR) and attenuated total reflection (ATR)–FTIR. Interfacial bond strength was measured in shear mode, the accelerator composition confirmed by X-ray fluorescence analysis (XRF), and the interfacial interaction of TP and composite cement with dentin investigated by X-ray diffraction (XRD), focused-ion-beam scanning electron microscopy (FIB-SEM) with 3-dimensional interface reconstruction, and transmission electron microscopy (TEM). RT/ATR-FTIR revealed the significantly highest DC when the composite cement was applied with the accelerator-containing primer. XRF disclosed a vanadium compound as a novel chemical accelerator within TP, instead of a classic chemical curing initiator system, to set off touch cure as soon the cement contacts the previously applied primer. Although the TP contains the acidic functional monomer 10-MDP for adhesion to tooth tissue, touch cure using the accelerator-containing TP combined the fastest/highest DC with the highest bond strength. FIB-SEM and TEM confirmed the tight interfacial interaction at dentin with submicron hybridization along with stable 10-MDP also Ca-salt nanolayering.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3