The Effect of Fluorhydroxyapatite-derived Fluoride on Acid Production by Streptococci

Author:

Guha-Chowdhury N.1,Iwami Y.2,Yamada T.2,Pearce E.I.F.1

Affiliation:

1. Dental Research Unit, Health Research Council of New Zealand, PO Box 27-007, Wellington, New Zealand

2. Department of Oral Biochemistry, Tohoku University School of Dentistry, Sendai, Japan

Abstract

The effect of fluoride derived from fluorhydroxyapatite (FHAp) minerals on bacterial glycolysis under aerobic and strictly anaerobic conditions was studied to validate the claims that this mineral could be used as a reservoir of fluoride in plaque. To isolate the direct effect of fluoride on bacterial glycolysis from that of an indirect pH-buffering effect of hydroxyl or phosphate ions which are also dissolved from the mineral, we equalized the pH-fall time course of reactions by manually adding KOH or HCl. This ensured that pH effects on glycolysis were minimized. Under controlled pH-fall and strictly anaerobic conditions, fluoride derived from the dissolution of FHAp containing more than 30,100 ppm fluoride (i.e., when the substitution of OH by F in the mineral was greater than 80%) had a direct inhibitory effect on lactic acid production in Streptococcus mutans. Under free pH-fall and strictly anaerobic conditions, increasing amounts of fluoride in FHAp (starting as low as 2000 ppm fluoride), appeared to have a pronounced indirect inhibitory effect on lactic acid production. This was probably mediated through a reducing pH buffer effect of the mineral. Even in the presence of high-fluoride FHAp, only 0.01 to 0.025 mmol/L fluoride was found in the reaction mixtures, a probable result of non-stoichiometric dissolution of FHAp. In spite of such low levels of fluoride, marked inhibitory effects on bacterial glycolysis were demonstrated. The results of this study suggest that high-fluoride FHAp may serve as a reservoir of fluoride for the inhibition of anaerobic acid production by S. mutans.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3