Lif Deficiency Leads to Iron Transportation Dysfunction in Ameloblasts

Author:

Fan L.1ORCID,Ou Y.J.2,Zhu Y.X.1,Liang Y.D.3,Zhou Y.14,Wang Y.N.14ORCID

Affiliation:

1. The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China

2. Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China

3. Yantian Hospital, Southern University of Science and Technology, Shenzhen, China

4. Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China

Abstract

Leukemia inhibitory factor (LIF), a member of the interleukin 6 family of cytokines, is involved in skeletal metabolism, blastocyst implantation, and stem cell pluripotency maintenance. However, the role of LIF in tooth development needs to be elucidated. The aim of the present study was to investigate the effect of Lif deficiency on tooth development and to elucidate the functions of Lif during tooth development and the underlying mechanisms. First, it was found that the incisors of Lif-knockout mice had a much whiter color than those of wild-type mice. Although there were no structural abnormalities or defective mineralization according to scanning electronic microscopy and computed tomography analysis, 3-dimensional images showed that the length of incisors was shorter in Lif−/− mice. Microhardness and acid resistance assays showed that the hardness and acid resistance of the enamel surface of Lif−/− mice were decreased compared to those of wild-type mice. In Lif−/− mice, whose general iron status was comparable to that of the control mice, the iron content of the incisors was significantly reduced, as confirmed by energy-dispersive X-ray spectroscopy (EDS) and Prussian blue staining. Histological staining showed that the cell length of maturation-stage ameloblasts was shorter in Lif−/− mice. Likewise, decreased expression of Tfrc and Slc40a1, both of which are crucial proteins for iron transportation, was observed in Lif−/− mice and Lif-knockdown ameloblast lineage cell lines, according to quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and Western blot. Moreover, the upregulation of Tfrc and Slc40a1 induced by Lif stimulation was blocked by Stattic, a signal transducer and activator of transcription 3 (Stat3) signaling inhibitor. These results suggest that Lif deficiency inhibits iron transportation in the maturation-stage ameloblasts, and Lif modulates expression of Tfrc and Slc40a1 through the Stat3 signaling pathway during enamel development.

Funder

Shenzhen Scientific Research Project

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3