Delivery of Alkaline Phosphatase Promotes Periodontal Regeneration in Mice

Author:

Nagasaki A.1ORCID,Nagasaki K.1,Kear B.D.1,Tadesse W.D.1,Thumbigere-Math V.2,Millán J.L.3,Foster B.L.4ORCID,Somerman M.J.1

Affiliation:

1. Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA

2. Division of Periodontology, School of Dentistry, University of Maryland, Baltimore, MD, USA

3. Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA

4. Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA

Abstract

Factors regulating the ratio of pyrophosphate (PPi) to phosphate (Pi) modulate biomineralization. Tissue-nonspecific alkaline phosphatase (TNAP) is a key promineralization enzyme that hydrolyzes the potent mineralization inhibitor PPi. The goal of this study was to determine whether TNAP could promote periodontal regeneration in bone sialoprotein knockout mice ( Ibsp−/− mice), which are known to have a periodontal disease phenotype. Delivery of TNAP was accomplished either systemically (through a lentiviral construct expressing a mineral-targeted TNAP-D10 protein) or locally (through addition of recombinant human TNAP to a fenestration defect model). Systemic TNAP-D10 delivered by intramuscular injection at 5 d postnatal (dpn) increased circulating alkaline phosphatase (ALP) levels in Ibsp−/− mice by 5-fold at 30 dpn, with levels returning to normal by 60 dpn when tissues were evaluated by micro–computed tomography and histology. Local delivery of recombinant human TNAP to fenestration defects in 5-wk-old wild type (WT) and Ibsp−/− mice did not alter long-term circulating ALP levels, and tissues were evaluated by micro–computed tomography and histology at postoperative day 45. Systemic and local delivery of TNAP significantly increased alveolar bone volume (20% and 37%, respectively) and cementum thickness (3- and 42-fold) in Ibsp−/− mice, with evidence for periodontal ligament attachment and bone/cementum marker localization. Local delivery significantly increased regenerated cementum and bone in WT mice. Addition of 100-μg/mL bovine intestinal ALP to culture media to increase ALP in vitro increased media Pi concentration, mineralization, and Spp1 and Dmp1 marker gene expression in WT and Ibsp−/− OCCM.30 cementoblasts. Use of phosphonoformic acid, a nonspecific inhibitor of sodium Pi cotransport, indicated that effects of bovine intestinal ALP on mineralization and marker gene expression were in part through Pi transport. These findings show for the first time through multiple in vivo and in vitro approaches that pharmacologic modulation of Pi/PPi metabolism can overcome periodontal breakdown and accomplish regeneration.

Funder

National Institute of Dental and Craniofacial Research

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3