The Diffusion and Enzymic Hydrolysis of Monofluorophosphate in Dental Plaque

Author:

Pearce E.I.F.1,Dibdin G.H.2

Affiliation:

1. Dental Research Unit, HRC of NZ, PO Box 27007, Wellington, NZ

2. MRC Dental Group, The Dental School, Bristol, England

Abstract

Although the ability of dental plaque to hydrolyze sodium monofluorophosphate (MFP) has been known for some time, its effect on the F- concentration at the plaque-enamel interface is undefined. We have determined enzyme kinetic values for MFP hydrolysis and diffusion coefficients so that the penetration and degradation of MFP in plaque can be modeled by computer. The KM and Vmax values for natural human plaque were 1.77 mmol/L and 41.4 nmol/min/mg protein, respectively, at pH 8.0. At pH 6.0, the Vmax was lower, 15.6 nmol/min/mg, but KM was not significantly different. Competitive inhibition by orthophosphate gave a Ki of 4.55 mmol/L. The diffusion coefficient for MFP in artificial plaque was 1.91 x 10-6 cm2/sec. When these data were used for mathematical modeling of the effects of rinsing with MFP and F-solutions, compared with an equivalent NaF application, the concentration of F- from MFP was lower at the inner surface of plaque, and the peak occurred later. Both pH and plaque thickness had a marked effect on the amount of MFP that could penetrate: At pH 8.0, almost none reached the inner surface of a 1-mm-thick plaque intact. At pH 6.0, however, more MFP was able to penetrate, due to lower MFPase activity. While MFP diffusion is inherently slower than that of F-, enzymic degradation increases the gradient for inward diffusion. If the conventional view that MFP in toothpaste acts as a source of F- is true, then MFP toothpaste should be formulated to optimize MFPase activity in dental plaque.

Publisher

SAGE Publications

Subject

General Dentistry

Reference46 articles.

1. Afseth J. (1981). The effect of monofluorophosphate on acidogenicity of dental plaque in vivo. In: Tooth surface interactions and preventive dentistry. Rolla G, Sonju T, Embery G, editors. London: IRL Press Ltd, pp. 59-64.

2. Whole Saliva Fluoride after Toothbrushing with NaF and MFP Dentifrices with Different F Concentrations

3. Bovine kidney alkaline phosphatase. Catalytic properties, subunit interactions in the catalytic process, and mechanism of Mg2+ stimulation.

4. Diffusion of sugars and carboxylic acids through human dental plaque in vitro

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3