Affiliation:
1. McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
2. Department of Oral and Maxillofacial Surgery, McGill University, Montreal, QC, Canada
3. Gerald Bronfman Department of Oncology, Medical Physics Unit, McGill University, Montreal, Canada
Abstract
Stem cell–based therapies could provide a permanent treatment for salivary gland (SG) hypofunction caused by ionizing radiation (IR) injury. However, current challenges for SG stem cells to reach the clinic include surgical invasiveness, amount of tissue needed, cell delivery, and storage methods. The objective of this study was to develop a clinically less invasive method to isolate and expand human SG stem cells and then to obtain a cell-free extract to be used as a therapy for IR-injured SGs. Human labial glands were biopsied, and labial stem cells (LSCs) were expanded by explant culture. The LSC extract (LSCE) was obtained by releasing the cellular components after 3 freeze-thaw cycles and 17,000 g force centrifugation. LSCE was injected intravenously into mice that had their SGs injured with 13-Gy IR. Positive (non-IR) and negative (IR) control mice received injections of saline (vehicle control). Three pieces of labial glands (0.1 g weight) could expand 1 to 2 million cells. LSCs had a doubling time of 18.8 h; could differentiate into osteocytes, adipocytes, and chondrocytes; and were positive for mesenchymal stem cell markers. Both angiogenic (FGF-1, FGF-2, KGF, angiopoietin, uPA, VEGF) and antiangiogenic factors (PAI-1, TIMP-1, TSP-1, CD26) were detected in LSCE. In addition, some angiogenic factors (PEDF, PTX3, VEGF) possessed neurotrophic functions. Mice treated with LSCE had 50% to 60% higher salivary flow rate than saline-treated mice at 8 and 12 wk post-IR. Saliva lag time measurements also confirmed that LSCE restored SG function. Histologic analyses of parotids and submandibular glands reported comparable numbers of acinar cells, blood vessels, and parasympathetic nerves and cell proliferation rates in sham IR and LSCE-treated mice, though significantly lower in saline-treated mice. An explant culture method can harvest a large number of LSCs from small pieces of labial glands. LSCE showed clinical potential to mitigate IR-injured SGs.
Funder
Canadian Institutes of Health Research
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献