Affiliation:
1. MRC Dental Group, The Dental School, Lower Maudlin St., Bristol BS1 2LY, United Kingdom
2. Department of Oral Biology, Faculty of Dentistry, University of Manitoba, 780 Bannatyne Ave., Winnipeg, MB, Canada R3E OW2
3. The Dental School, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, Scotland, UK
Abstract
Variation in salivary access to different intra-oral sites is an important factor in the site-dependence of dental caries. This study explored, theoretically, how access is modified by chewing sugar-free and sugar-containing gums. A finite difference computer model, described elsewhere, was used. This allowed for diffusion and/or reaction of substrate, acid product, salivary buffers, and fixed-acid groups. Site-dependent saliva/plaque exchange was modeled in terms of a 100-μm-thick salivary film covering the plaque (a) flowing directly from the salivary ducts, (b) flowing from the intra-oral salivary pool, or (c) exchanging with the pool. Computed flow-velocities or rates of exchange were based on previous intra-oral measurements. The model was also tested against an in vitro study conducted by two of the authors. In addition, the three proposed models of saliva/plaque interaction were compared, and the effect of salivary film thickness investigate. Results suggested that: (1) although sugar-free gum chewed during a cariogenic challenge causes a rapid rise in plaque pH, sucrose-containing gums cause the pH, after a temporary rise resulting from increased salivary flow, to stay low for an extended period; (2) the computer model reproduced in vitro tests reasonably well; (3) although the three models of the plaque/saliva interaction start from different assumptions, two lead to closely related predictions; and (4) increasing the assumed salivary film thickness by a large amount ( e.g., from 50 to 200 μm) caused no change in modeled Stephan curves, as long as these changes were accompanied by appropriate reductions in film velocity, in accord, theoretically, with the practical clearance data.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献