Affiliation:
1. Clinical Investigations and Patient Care Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892
Abstract
It is very well established that the principal control of salivary secretion is derived from autonomic innervation. Transmission of a neural signal to a salivary gland acinar cell occurs chemically via neurotransmitters, the first messengers of a secretory response. Neurotransmitters bind to specific cell surface receptor proteins, an event which activates precise transduction mechanisms which then transfer the neural signal to the inside of the cell. There are two major transduction mechanisms operative in salivary gland acinar cells. One involves the generation of cAMP, the other involves the breakdown of plasma membrane polyphosphoinositides. For both mechanisms, the appropriate stimulated receptor activates a second plasma membrane protein, termed an N (or G) protein. The N protein requires GTP to activate an enzyme (adenylate cyclase or phospholipase C), which then catalyzes the formation of a second messenger (cAMP and inositol trisphosphate/diacylglycerol, respectively). This action provides the intracellular signal for secretory events (protein, fluid, electrolyte secretion) to begin.
Cited by
165 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献