Ion Transport and Water Movement

Author:

Martinez J. R.1

Affiliation:

1. Departments of Child Health and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212

Abstract

Secretion of water and electrolytes in salivary glands occurs by a dual process involving the formation of a plasma-like, isotonic primary-secretion in salivary acini and its subsequent modification in salivary-ducts by the removal and addition of specific ions. The mechanisms underlying the formation of primary acinar secretion have been investigated with a number of experimental approaches such as electrophysiology, the measurement of ion transport in gland fragments and dispersed acinar cells, and the evaluation of the ionic requirements for secretion in isolated, perfused gland preparations. The ac-cumulated evidence suggests that salivary secretion is formed by a complex interaction between passive and active ion movements across acinar cell membranes, resulting in the trans-acinar movement of Cl and Na* and, by the osmotic gradient which develops, of water. A major consequence of stimulation is the release of K+ through Ca++ -and voltage-sensitive channels and its subsequent recycling back into the cells by ouabain- and furosemide-sensitive transport systems. This results in NaCl uptake across the basolateral cell membrane and the subsequent efflux of Cl through luminal membrane channels, which also appear to be sensitive to cellular Ca++. The rates of these various ion movements appear to be, therefore, closely linked and interdependent. Ductal modification of the primary secretion has been studied in microperfused duct preparations. The evidence likewise indicates that it involves interactions between complex conductance pathways in the luminal cell membrane and a Na, K pump present in the basolateral cell membrane and that it is under autonomic and hormonal control. Activation of ductal transport mechanisms results in NaCl reabsorption and KHCO3 secretion. Final saliva thus differs from primary secretion in electrolyte composition and, because water permeability is low in the duct epithelium, becomes hypotonic. Alterations in fluid and electrolyte secretion such as those observed in disease can result, therefore, from disturbances in one or more of these complex transport processes in acinar or duct cells.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3