Wear and Microhardness of a Silver-sintered Glass-Ionomer Cement

Author:

McKinney J.E.1,Antonucci J.M.1,Rupp N.W.2

Affiliation:

1. National Bureau of Standards, Gaithersburg, Maryland 20899

2. American Dental Association Health Foundation, Paffenbarger Research Center, National Bureau of Standards, Gaithersburg, Maryland 20899

Abstract

Knoop Hardness and pin-and-disc-wear measurements were made on a commercial silver-sintered glass-ionomer cement. The objective was to determine whether the incorporation of a bonded-metal-to-glass filler would enhance durability as determined by the above measurements. As with the previous work on conventional (non-metalized) glass-ionomer cements, the specimens were preconditioned at 37°C in air, water, 0.02 mol/L lactic acid (pH 2.67), and heptane. The influence of these media on the microhardness of the silver-sintered material was about the same as that on the conventional materials. Storing in air produced dehydration, which increased the hardness considerably. Heptane storage increased the hardness less, but this increase is attributed to continued curing during storage. After storage in water, the hardness was essentially unchanged; the influence of increased cure is believed to be offset by softening or plasticization from water uptake. Lactic acid produced a decrease in hardness from chemical dissolution as seen from the SEM observations. In most cases, in particular for the air-stored specimens, the wear resistance was enhanced markedly over that of the conventional materials evaluated previously. The exception was the lactic acid-stored specimens for which little, or no, improvement was observed during early periods of wear. The incorporation of silver appeared to provide lubrication, thus reducing wear. However, catastrophic failure from brittle fracture was still a problem, but its occurrence was less frequent.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3