Cost-effectiveness of Artificial Intelligence for Proximal Caries Detection

Author:

Schwendicke F.1ORCID,Rossi J.G.1,Göstemeyer G.2,Elhennawy K.3,Cantu A.G.1,Gaudin R.4,Chaurasia A.5,Gehrung S.1,Krois J.1

Affiliation:

1. Department of Oral Diagnostics, Digital Health and Health Services Research, Charité–Universitätsmedizin Berlin, Berlin, Germany

2. Department of Operative and Preventive Dentistry, Charité–Universitätsmedizin Berlin, Berlin, Germany

3. Department of Orthodontics, Dentofacial Orthopedics and Pedodontics, Charité–Universitätsmedizin Berlin, Berlin, Germany

4. Department of Oral and Maxillofacial Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany

5. Department of Oral Medicine and Radiology, King George’s Medical University, Lucknow, India

Abstract

Artificial intelligence (AI) can assist dentists in image assessment, for example, caries detection. The wider health and cost impact of employing AI for dental diagnostics has not yet been evaluated. We compared the cost-effectiveness of proximal caries detection on bitewing radiographs with versus without AI. U-Net, a fully convolutional neural network, had been trained, validated, and tested on 3,293, 252, and 141 bitewing radiographs, respectively, on which 4 experienced dentists had marked carious lesions (reference test). Lesions were stratified for initial lesions (E1/E2/D1, presumed noncavitated, receiving caries infiltration if detected) and advanced lesions (D2/D3, presumed cavitated, receiving restorative care if detected). A Markov model was used to simulate the consequences of true- and false-positive and true- and false-negative detections, as well as the subsequent decisions over the lifetime of patients. A German mixed-payers perspective was adopted. Our health outcome was tooth retention years. Costs were measured in 2020 euro. Monte-Carlo microsimulations and univariate and probabilistic sensitivity analyses were conducted. The incremental cost-effectiveness ratio (ICER) and the cost-effectiveness acceptability at different willingness-to-pay thresholds were quantified. AI showed an accuracy of 0.80; dentists’ mean accuracy was significantly lower at 0.71 (minimum–maximum: 0.61–0.78, P < 0.05). AI was significantly more sensitive than dentists (0.75 vs. 0.36 [0.19–0.65]; P = 0.006), while its specificity was not significantly lower (0.83 vs. 0.91 [0.69–0.98]; P > 0.05). In the base-case scenario, AI was more effective (tooth retention for a mean 64 [2.5%–97.5%: 61–65] y) and less costly (298 [244–367] euro) than assessment without AI (62 [59–64] y; 322 [257–394] euro). The ICER was −13.9 euro/y (i.e., AI saved money at higher effectiveness). In the majority (>77%) of all cases, AI was less costly and more effective. Applying AI for caries detection is likely to be cost-effective, mainly as fewer lesions remain undetected. Notably, this cost-effectiveness requires dentists to manage detected early lesions nonrestoratively.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3