Metabolic Syndrome Exacerbates Inflammation and Bone Loss in Periodontitis

Author:

Li Y.1,Lu Z.1,Zhang X.1,Yu H.2,Kirkwood K.L.2,Lopes-Virella M.F.13,Huang Y.123

Affiliation:

1. Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA

2. Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA

3. Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA

Abstract

Clinical studies have shown that metabolic syndrome (MetS) is associated with increased risk of developing periodontitis. However, the underlying mechanisms remain largely unknown. Since it is known that lipopolysaccharide (LPS)–activated toll-like receptor 4 signaling pathways play a crucial role in periodontitis, we hypothesized that MetS enhances LPS-induced periodontal inflammation and alveolar bone loss. In this study, we induced MetS in C57BL/6 mice by feeding them high-fat diet (HFD), and we induced periodontitis by periodontal injection of Aggregatibacter actinomycetemcomitans LPS. We found that mice fed a HFD had significantly increased body weight, plasma lipids, insulin, and insulin resistance when compared with mice fed regular chow, indicating that the mice developed MetS. We also found that a HFD markedly increased LPS-induced alveolar bone loss, osteoclastogenesis, and inflammatory infiltration. Analysis of gene expression in periodontal tissue revealed that HFD and LPS injection cooperatively stimulated expression of cytokines that are known to be involved in periodontal tissue inflammation and osteoclastogenesis—such as interleukin 6, monocyte-chemotactic protein 1, receptor activator of nuclear factor kappa-B ligand, and macrophage colony-stimulating factor. To further understand the potential mechanisms involved in MetS-boosted tissue inflammation, our in vitro studies showed that palmitic acid—the most abundant saturated fatty acid (SFA) and the major SFA in the HFD used in our animal study—potently enhanced LPS-induced proinflammatory gene expression in macrophages. In sum, this study demonstrated that MetS was associated with increased periodontal inflammation and alveolar bone loss in an LPS-induced periodontitis animal model. This study also suggests that SFA palmitic acid may play an important role in MetS-associated periodontitis by enhancing LPS-induced expression of inflammatory cytokines in macrophages.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3