Transcriptional Factor ATF6 is Involved in Odontoblastic Differentiation

Author:

Kim J.W.12,Choi H.32,Jeong B.C.32,Oh S.H.32,Hur S.W.32,Lee B.N.12,Kim S.H.2,Nör J.E.4,Koh J.T.32,Hwang Y.C.12

Affiliation:

1. Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea

2. Research Center for Biomineralization Disorders, Chonnam National University, Gwangju, Korea

3. Department of Pharmacology and Dental Therapeutics, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea

4. Angiogenesis Research Laboratory, Department of Cariology, Restorative Sciences, Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109-1078, USA

Abstract

ATF6 is an endoplasmic reticulum (ER) membrane-bound transcription factor that regulates various cellular functions. The purpose of this study was to investigate the role of ATF6 in odontoblast differentiation. Rat tooth germs were isolated, changes in gene expression were evaluated over time, and localization of ATF6 was determined by immunohistochemistry. Human dental pulp cells (HDPCs) were cultured with 50 µg/mL ascorbic acid and 5 mmol/L β-glycerophosphate or 100 ng/mL bone morphogenetic protein 2 to induce differentiation. Translocation of ATF6 was observed by immunofluorescence and confocal microscopy. Overexpression of ATF6 was performed with an adenoviral vector. Matrix mineralization was evaluated by alizarin red staining. Immunoreactivity to anti-ATF6 was observed in the odontoblastic layer of the molar tooth germ, and expressions of ATF6, dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) increased gradually during tooth germ development. When HDPCs were cultured in differentiation media, ATF6, DSPP, and DMP1 expression increased with the expression of unfolded protein response (UPR) markers, BiP and CHOP. Immunofluorescence results showed that ATF6 protein moved from cytoplasm to nucleus when cells were exposed to differentiation media. Notably, overexpression of ATF6 increased DSPP and DMP1 expression, alkaline phosphatase (ALP) activity, and matrix mineralization in HDPC cultures. Inhibition of ATF6 decreased ALP activity and mineralization. These results suggest that ER membrane-bound transcriptional factor ATF6 may be involved in odontoblastic differentiation.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3