Affiliation:
1. Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, NY, USA
Abstract
Salivary glands have an essential secretory function for maintaining oral and overall health. The epithelial compartment of the gland is composed of several highly specialized cell types that cooperate to secrete and deliver saliva to the oral cavity. The mouse submandibular gland has been used as a model for major salivary glands in human. The secretory complex in this model is composed of 2 secretory compartments, including acini and granular ducts connected by intercalated ducts. Contractile myoepithelial cells surround the secretory complex to facilitate salivary flow. Whether differentiated cells in the secretory complex are maintained by self-duplication or contribution from stem cells has remained an open question. Here, in analyzing the expression of basal cytokeratin (K) 14 in the secretory complex, we discovered a subset of K14+ ductal cells in the intercalated ducts of the adult gland. These cells are distinct from the K14-expressing basal/myoepithelial cells, proliferate at a significantly higher rate than any other epithelial cell type in the gland, and reside in a spatially defined domain within the intercalated duct. Using inducible genetic lineage tracing, we show that K14+ ductal cells represent a long-lived yet cycling population of stem cells that are established during development and contribute to the formation and maintenance of the granular ducts throughout life. Our data provide direct evidence for the existence of stem cells contributing to homeostasis of salivary glands, as well as new insights into glandular pathobiology.
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献