Effects of Red Light-emitting Diode Irradiation on Dental Pulp Cells

Author:

Holder M.J.1,Milward M.R.1,Palin W.M.2,Hadis M.A.2,Cooper P.R.1

Affiliation:

1. Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

2. Biomaterials Unit, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

Abstract

Light irradiation activates a range of cellular processes in a variety of cell types, including stem cells, and can promote tissue repair. This study investigated the effects of light-emitting diode (LED) exposure on dental pulp cells (DPCs). Dose response analysis at 20-second intervals up to 120 seconds demonstrated that a LED array emitting 653-nm red light stimulated significantly increased cell growth at 3 and 7 days post-irradiation with 40 (149 mJ/cm2) and 60 (224 mJ/cm2) seconds of radiant exposure. Double-dosing cells at days 1 and 4 of a 7-day culture period with 60-second (224 mJ/cm2) LED exposure significantly increased cell growth compared with a single dosing regime. BrdU analysis demonstrated significantly increased proliferation rates associated with significantly increased ATP, nitric oxide (NO), and mitochondrial metabolic activity. LED-stimulated NO levels were not reduced by inhibition of NO-synthase activity. Light exposure also rescued the inhibition of mitochondrial dysfunction and increased levels of in vitro mineralization compared with control. Media exchange experiments indicated that autocrine signaling was not likely responsible for red-light-induced DPC activity. In conclusion, data analysis indicated that 653-nm LED irradiation promoted DPC responses relevant to tissue repair, and this is likely mediated by increased mitochondrial activity.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3