The Challenge for Innovation in Direct Restorative Materials

Author:

Bayne S.1,Petersen P.E.2,Piper D.3,Schmalz G.4,Meyer D.5

Affiliation:

1. School of Dentistry, University of Michigan, Ann Arbor, MI, USA

2. World Heath Organization, Global Health Programme, Geneva, Switzerland

3. Deputy Head, Chemicals Branch, Division of Technology, Industry and Economics, United Nations Environment Programme, Geneva, Switzerland

4. University of Regensburg, Germany

5. Division of Science, American Dental Association, 211 East Chicago Avenue, Chicago, IL, USA

Abstract

During the past 50 years, a series of key UN conferences have established a framework to minimize human health risks from environmental exposures to key chemicals. In January 2013, more than 140 countries agreed to the text of new treaty to minimize Hg effects on the environment (the Minamata Convention). Dental caries is omnipresent around the globe, affecting 60% to 90% of school children and most adults, and producing discomfort that affects quality of life. Dental amalgam is frequently used to treat carious lesions and its use releases mercury into the environment. The best way to avoid the use of dental amalgam is to emphasize caries prevention. Alternatives to amalgam are suitable in some applications, but no replacement for amalgam has been found for large posterior restorations. For any restorative material, safety and environmental impacts are part of clinical risk assessment. Safety is freedom from unacceptable risks. Risk is a combination of probability of exposure and severity of harm. Best management practices are crucial to manage dental amalgam, but these impose additional that are disproportionately more for developing countries. The Minamata Convention seeks a phase-out of all mercury-based products except dental amalgam, where a phase-down is the present goal. For dentistry, the most important focus is the promotion of caries prevention and research on new materials.

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3