Chemical Events during Tooth Dissolution

Author:

Larsen M.J.1

Affiliation:

1. Department of Oral Anatomy, Dental Pathology and Operative Dentistry, Royal Dental College, Vennelyst Boulevard, DK-8000 Aarhus C, Denmark

Abstract

The aims of the present survey were to describe some aspects of (a) enamel solubility in relation to pH and to the fluoride concentration, (b) chemical changes which occur during enamel dissolution, and (c) enamel resistance with an attempt to relate chemical events to clinical observations. The solubility of enamel powder increases dramatically with a decrease of pH. As long as the fluoride concentration in solution is high, the amount of enamel dissolved is low. When fluoride occurs only in the solid phase, the solubility is only slightly affected. Two clinically distinct lesions have been described in dental enamel: the erosion lesion, characterized by a dissolution of enamel from the surface; and the caries lesion, in which the enamel surface layer, accumulating fluoride, remains relatively intact, while the subsurface enamel dissolves. It was concluded that any dissolution of enamel is caused by an undersaturation with respect to enamel apatite. When whole enamel dissolves, the saturation with respect to fluorapatite determines whether a well-mineralized surface layer remains, i.e., whether the dissolution results in an erosion or a caries lesion. The degree of supersaturation with respect to fluorapatite determines the uptake of fluoride in the surface layer and its mineral content. It was observed that different areas of the enamel surface possess different degrees of resistance. A satisfactory explanation for the resistance has not been given.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3