Midkine Promotes Odontoblast-like Differentiation and Tertiary Dentin Formation

Author:

Park Y.H.1ORCID,Lee Y.S.1,Seo Y.M.1,Seo H.1,Park J.S.2,Bae H.S.3,Park J.C.1

Affiliation:

1. Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea

2. Department of Dental Hygiene, Seoyeong University, Gwang-ju, Republic of Korea

3. Department of Oral Hygiene, Namseoul University, Cheonan, Republic of Korea

Abstract

Autophagy is an intracellular self-degradation process that is essential for tissue development, cell differentiation, and survival. Nevertheless, the role of autophagy in tooth development has not been definitively identified. The goal of this study was to investigate how autophagy is involved in midkine (MK)–mediated odontoblast-like differentiation, mineralization, and tertiary dentin formation in a mouse tooth pulp exposure model. In vitro studies show that MK and LC3 have similar expression patterns during odontoblast-like cell differentiation. Odontoblast-like cell differentiation is promoted through MK-mediated autophagy, which leads to increased mineralized nodule formation. Subcutaneous transplantation of hydroxyapatite/tricalcium phosphate with rMK-treated human dental pulp cells led to dentin pulp–like tissue formation through MK-mediated autophagy. Furthermore, MK-mediated autophagy induces differentiation of dental pulp cells into odontoblast-like cells that form DSP-positive tertiary dentin in vivo. Our findings may provide 1) novel insight into the role of MK in regulating odontoblast-like differentiation and dentin formation in particular via autophagy and 2) potential application of MK in vital pulp therapy.

Funder

national research foundation of korea

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3