Endothelial-Initiated Crosstalk Regulates Dental Pulp Stem Cell Self-Renewal

Author:

Oh M.1,Zhang Z.1,Mantesso A.1,Oklejas A.E.1,Nör J.E.123

Affiliation:

1. Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA

2. Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA

3. Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA

Abstract

Interactions with the microenvironment modulate the fate of stem cells in perivascular niches in tissues (e.g., bone) and organs (e.g., liver). However, the functional relevance of the molecular crosstalk between endothelial cells and stem cells within the perivascular niche in dental pulps is unclear. Here, we tested the hypothesis that endothelial cell–initiated signaling is necessary to maintain self-renewal of dental pulp stem cells. Confocal microscopy showed that ALDH1high and Bmi-1high stem cells are preferentially localized in close proximity to blood vessels in physiological human dental pulps. Secondary orosphere assays revealed that endothelial cell–derived factors (e.g., interleukin-6 [IL-6]) promote self-renewal of dental pulp stem cells cultured in low-attachment conditions. Mechanistic studies demonstrated that endothelial cell–derived IL-6 activates IL-6R (IL-6 Receptor) and signal transducer and activator of transcription 3 (STAT3) signaling and induces expression of Bmi-1 (master regulator of stem cell self-renewal) in dental pulp stem cells. Transplantation of dental pulp stem cells stably transduced with small hairpin RNA (shRNA)–STAT3 into immunodeficient mice revealed a decrease in the number of blood vessels surrounded by ALDH1high or Bmi-1high cells (perivascular niches) compared to tissues formed upon transplantation of vector control stem cells. And finally, in vitro capillary sprouting assays revealed that inhibition of IL-6 or STAT3 signaling decreases the vasculogenic potential of dental pulp stem cells. Collectively, these data demonstrate that endothelial cell–derived IL-6 enhances the self-renewal of dental pulp stem cells via STAT3 signaling and induction of Bmi-1. These data suggest that a crosstalk between endothelial cells and stem cells within the perivascular niche is required for the maintenance of stem cell pools in dental pulps.

Funder

National Institute of Dental and Craniofacial Research

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3