Using Data Mining and Time Series to Investigate ME and CFS Naming Preferences

Author:

Bhatia Shaun1ORCID,Jason Leonard A.1

Affiliation:

1. DePaul University, Chicago, IL, USA

Abstract

There have been numerous iterations of naming convention specified for Myalgic Encephalomyelitis (ME) and Chronic Fatigue Syndrome (CFS). As health care turns to “big data” analytics to gain insights, the Google Trends database was mined to ascertain worldwide trends of public interest in several ME- and CFS-related search categories between 2004 and 2019. Time series analysis revealed that though “Chronic Fatigue Syndrome” remains the predominant search category in the ME and CFS field, the interest index declined at a rate of 2.77 per month during the 15-year study period. In the same time period, the interest index in “ME/CFS Hybrid” terms increased at a rate of 3.20 per month. Potential causal mechanisms for these trends and implications for patient sentiment analysis are discussed.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

SAGE Publications

Subject

Law,Health (social science)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3