Finding globally optimal macrostructure in multiple relation, mixed-mode social networks

Author:

Dabkowski Matthew F1ORCID,Fan Neng2,Breiger Ronald3ORCID

Affiliation:

1. Department of Systems Engineering, United States Military Academy, West Point, NY, USA

2. Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, USA

3. School of Sociology, University of Arizona, Tucson, AZ, USA

Abstract

From the outset, computational sociologists have stressed leveraging multiple relations when blockmodeling social networks. Despite this emphasis, the majority of published research over the past 40 years has focused on solving blockmodels for a single relation. When multiple relations exist, a reductionist approach is often employed, where the relations are stacked or aggregated into a single matrix, allowing the researcher to apply single relation, often heuristic, blockmodeling techniques. Accordingly, in this article, we develop an exact procedure for the exploratory blockmodeling of multiple relation, mixed-mode networks. In particular, given (a) [Formula: see text] actors, (b) [Formula: see text] events, (c) an [Formula: see text] binary one-mode network depicting the ties between actors, and (d) an [Formula: see text] binary two-mode network representing the ties between actors and events, we use integer programming to find globally optimal [Formula: see text] image matrices and partitions, where [Formula: see text] and [Formula: see text] represent the number of actor and event positions, respectively. Given the problem’s computational complexity, we also develop an algorithm to generate a minimal set of non-isomorphic image matrices, as well as a complementary, easily accessible heuristic using the network analysis software Pajek. We illustrate these concepts using a simple, hypothetical example, and we apply our techniques to a terrorist network.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3