Algorithm for Predicting Disease Likelihood From a Submaximal Exercise Test

Author:

Kim Chul-Ho1,Hansen James E1,MacCarter Dean J1,Johnson Bruce D1

Affiliation:

1. Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA

Abstract

We developed a simplified automated algorithm to interpret noninvasive gas exchange in healthy subjects and patients with heart failure (HF, n = 12), pulmonary arterial hypertension (PAH, n = 11), chronic obstructive lung disease (OLD, n = 16), and restrictive lung disease (RLD, n = 12). They underwent spirometry and thereafter an incremental 3-minute step test where heart rate and SpO2 respiratory gas exchange were obtained. A custom-developed algorithm for each disease pathology was used to interpret outcomes. Each algorithm for HF, PAH, OLD, and RLD was capable of differentiating disease groups ( P < .05) as well as healthy cohorts (n = 19, P < .05). In addition, this algorithm identified referral pathology and coexisting disease. Our primary finding was that the ranking algorithm worked well to identify the primary referral pathology; however, coexisting disease in many of these pathologies in some cases equally contributed to the cardiorespiratory abnormalities. Automated algorithms will help guide decision making and simplify a traditionally complex and often time-consuming process.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Pulmonary and Respiratory Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3