Dynamics of Musical Success: A Machine Learning Approach for Multimedia Data Fusion

Author:

Boughanmi Khaled,Ansari Asim

Abstract

The success of creative products depends on the felt experience of consumers. Capturing such consumer reactions requires the fusing of different types of experiential covariates and perceptual data in an integrated modeling framework. In this article, the authors develop a novel multimodal machine learning framework that combines multimedia data (e.g., metadata, acoustic features, user-generated textual data) in creative product settings and apply it to predict the success of musical albums and playlists. The authors estimate the proposed model on a unique data set collected using different online sources. The model integrates different types of nonparametrics to flexibly accommodate diverse types of effects. It uses penalized splines to capture the nonlinear impact of acoustic features and a supervised hierarchical Dirichlet process to represent crowd sourced textual tags, and it captures dynamics via a state-space specification. The authors show the predictive superiority of the model with respect to several benchmarks. The results illuminate the dynamics of musical success over the past five decades. The authors then use the components of the model for marketing decisions such as forecasting the success of new albums, conducting album tuning and diagnostics, constructing playlists for different generations of music listeners, and providing contextual recommendations.

Funder

W. Edwards Deming Center of Columbia Business School

Publisher

SAGE Publications

Subject

Marketing,Economics and Econometrics,Business and International Management

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3