HINoV: A New Model to Improve Market Segment Definition by Identifying Noisy Variables

Author:

Carmone Frank J.1,Kara Ali2,Maxwell Sarah3

Affiliation:

1. Department of Marketing, Wayne State University

2. College of Business Administration, Pennsylvania State University at York

3. Graduate School of Business, Fordham University

Abstract

Although cluster analysis is the procedure most frequently used to define data-based market segments, it is not without problems. This research addresses one of its major problems: the selection of the “best” subset of variables on which to cluster. If this selection is not made carefully, “noisy” variables that contain little clustering information can cause misleading results. To help isolate potentially noisy variables prior to clustering, the authors discuss a new algorithm, the Heuristic Identification of Noisy Variables (HINoV). They demonstrate its robustness with artificial data. In addition, the authors illustrate the potential of HINoV to yield more managerially useful market segments (clusters) when applied to two real marketing data sets. Implementation of HINoV is straightforward and will help avoid a major problem in using K-means cluster analysis for market segment definition, as well as for other similar types of research.

Publisher

SAGE Publications

Subject

Marketing,Economics and Econometrics,Business and International Management

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3