Testing regression and mean model approaches to facial soft-tissue thickness estimation

Author:

Houlton Tobias MR1ORCID,Jooste Nicolene2,Steyn Maryna1

Affiliation:

1. Human Variation and Identification Research Unit (HVIRU), School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa

2. Department of Human Anatomy and Physiology, University of Johannesburg, Doornfontein, South Africa

Abstract

Average facial soft-tissue thickness (FSTT) databanks are continuously developed and applied within craniofacial identification. This study considered and tested a subject-specific regression model alternative for estimating the FSTT values for oral midline landmarks using skeletal projection measurements. Measurements were taken from cone-beam computed tomography scans of 100 South African individuals (60 male, 40 female; Mage = 35 years). Regression equations incorporating sex categories were generated. This significantly improved the goodness-of-fit ( r2-value). Validation tests compared the constructed regression models with mean FSTT data collected from this study, existing South African FSTT data, a universal total weighted mean approach with pooled demographic data and collection techniques and a regression model approach that uses bizygomatic width and maximum cranial breadth dimensions. The generated regression equations demonstrated individualised results, presenting a total mean inaccuracy (TMI) of 1.53 mm using dental projection measurements and 1.55 mm using cemento-enamel junction projection measurements. These slightly outperformed most tested mean models (TMI ranged from 1.42 to 4.43 mm), and substantially outperformed the pre-existing regression model approach (TMI = 5.12 mm). The newly devised regressions offer a subject-specific solution to FSTT estimation within a South African population. A continued development in sample size and validation testing may help substantiate its application within craniofacial identification.

Funder

Leverhulme Trust

Publisher

SAGE Publications

Subject

Law,Health Policy,Issues, ethics and legal aspects

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3