Glyoxal and Methylglyoxal as E-cigarette Vapor Ingredients-Induced Pro-Inflammatory Cytokine and Mucins Expression in Human Nasal Epithelial Cells

Author:

Kwak Soyoung12ORCID,Choi Yoon Seok2,Na Hyung Gyun2,Bae Chang Hoon2,Song Si-Youn2,Kim Yong-Dae23

Affiliation:

1. Department of Medical Science, College of Medicine, Yeungnam University, Daegu, Republic of Korea

2. Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea

3. Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Republic of Korea

Abstract

Background Glyoxal (GO), and methylglyoxal (MGO) are among the most toxic compounds emitted by electronic cigarette (E-cig) and regular tobacco cigarette smoke. Airway diseases presented mucus over production as their major pathophysiologic feature. However, the effects of GO and MGO on pro-inflammatory cytokines and mucin expression in human nasal epithelial cells, as well as the underlying signaling pathway, have not yet been studied. Objective This study is to determine whether GO and MGO induce pro-inflammatory cytokines, and MUC5AC/5B expression via mitogen-activated protein kinase (MAPK)s and nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways. Methods The effect of GO, and MGO on pro-inflammatory cytokines, mucins expression and the signalling pathway of GO and MGO were investigated using water-soluble tetrazolium salt-1, enzyme immunoassays, and immunoblot analysis with specific inhibitors and small interfering RNA. Results GO and MGO did not affect cell viability up to 2 mM in human nasal epithelial cells. GO and MGO increased production of pro-inflammatory such as interleukin (IL)-1β and IL-6) and MUC5AC/5B. Additionally, GO and MGO significantly activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK, and NF-κB. Whether ERK1/2, p38 MAPK, and NF-κB signaling pathway were involved in GO and MGO-induced production of pro-inflammatory cytokines (IL-1β and IL-6) and MUC5AC/5B, we used specific inhibitors and siRNA transfection. These significantly repressed GO- and MGO-induced expression of pro-inflammatory cytokines (IL-1β and IL-6) and MUC5AC/5B. Conclusions GO and MGO induced pro-inflammatory cytokines and MUC5AC/5B expression via ERK1/2, p38 MAPK, and NF-κB in human nasal epithelial cells. These results suggested that GO and MGO may be involved in mucus hypersecretion-related airway diseases.

Funder

Ministry of Science, ICT and Future Planning

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology,Immunology and Allergy

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3