CircKIAA0368 Promotes Proliferation, Migration, and Invasion by Upregulating HOXA10 in Nasopharyngeal Carcinoma

Author:

Chen Zhiping12,Gong Qiaoying2,Li Daojing2,Zhou Juying1ORCID

Affiliation:

1. Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China

2. Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China

Abstract

Background Nasopharyngeal carcinoma (NPC) represents a head and neck cancer caused by cancerization of nasal epithelial cells. HOXA10 has been identified to promote proliferation and invasion of NPC cells, but its regulatory mechanism has not been well discussed. Published research work has also pointed out that circular RNAs (circRNAs) could regulate mRNAs to affect NPC tumorigenesis and development. Aim To explore the roles of HOXA10 and its specific regulatory mechanism regarding circRNAs in NPC. Methods Reverse transcription polymerase chain reaction and western blot were applied to test gene expression. Functional assays were used to evaluate changes in NPC cell phenotypes. Mechanism assays were done to verify RNA-RNA or RNA-protein interaction. Results HOXA10 was highly expressed in NPC tissues and cell lines. Moreover, HOXA10 knockdown could restrict NPC cell proliferation, invasion, migration, and epithelial–mesenchymal transition. CircKIAA0368 was upregulated in NPC cells and could elevate HOXA10 expression by sponging miR-6838-5p. Furthermore, circKIAA0368 was unveiled to competitively bind to p300/CREB-binding protein-associated factor (PCAF) to repress acetylation and degradation of HOXA10 protein. Conclusion CircKIAA0368 upregulates HOXA10 expression via miR-6838-5p and PCAF, consequently promoting NPCcell and tumor growth.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology,Immunology and Allergy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3