Effects of Anatomical Variations of the Nasal Cavity on Acoustic Rhinometry Measurements: A Model Study

Author:

Cakmak Ozcan1,Çelik Huseyin2,Cankurtaran Mehmet2,Ozluoglu Levent Naci1

Affiliation:

1. Faculty of Medicine, Department of Otorhinolaryngology, Baskent University, Ankara, Turkey

2. Faculty of Engineering, Department of Physics, Hacettepe University, Beytepe, Ankara, Turkey

Abstract

Background The goal of this study was to assess how anatomic variations of the nasal cavity affect the accuracy of acoustic rhinometry (AR) measurements. Methods A cast model of a human nasal cavity was used to investigate the effects of the nasal valve and paranasal sinuses on AR measurements. A luminal impression of a cadaver nasal cavity was made, and a cast model was created from this impression. To simulate the nasal valve, inserts of varying inner diameter were placed in the model nasal passage. To simulate the paranasal sinuses, side branches with varying neck diameters and cavity volumes were attached to the model. Results The AR measurements of the anterior nasal passage were reasonably precise when the passage area of the insert was within the normal range. When the passage area of the insert was reduced, AR measurements significantly underestimated the cross-sectional areas beyond the insert. The volume of the paranasal sinus had limited effect on AR measurements when the sinus ostium was small. However, when the ostium size was large, increasing the volume of the sinus led to significant overestimation of AR-derived areas beyond the ostium. Conclusion The pathologies that narrow the anterior nasal passage result in the most significant AR error by causing area underestimation beyond the constriction. It also appears that increased paranasal sinus volume causes overestimation of areas posterior to the sinus ostium when the ostium size is large. If these physical effects are not considered, the results obtained during clinical examination with AR may be misinterpreted.

Publisher

SAGE Publications

Subject

Otorhinolaryngology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3