Olfactory Ensheathing Cells Mediate Neuroplastic Mechanisms After Olfactory Training in Mouse Model

Author:

Kim Boo-Young1ORCID,Park JuYeon2,Kim EuiJin2,Kim ByungGuk3

Affiliation:

1. Department of Otorhinolaryngology—Head and Neck Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea

2. Department of Clinical Laboratory, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea

3. Department of Otorhinolaryngology—Head and Neck Surgery, St. Paul Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

Abstract

Background Several studies have reported beneficial effects of olfactory training (OT) on the olfactory nervous system. However, the mechanisms underlying the regeneration of the olfactory system induced by OT are still under investigation. Objectives To determine the key mechanisms involved in the olfactory system recovery and to assess the neuroplastic effects of OT. Methods Thirty healthy female C57BL/6 mice were randomly allocated to 4 groups: control, n = 6; anosmia (no treatment), n = 8; OT, n = 8; and steroid treatment; n = 8. Except for the control group, mice were administered 3-methylindole. Anosmia was assessed using a food-finding test (FFT). The olfactory neuroepithelium was for histological examinations, gene ontology with pathway analyses, RNA, and protein studies. Results FFT was significantly reduced at 3 weeks in the OT mice versus steroids (78.27 s vs 156.83 s, P < .008) and controls (78.27 s vs 13.14 s, P < .003), although final outcome in the FFT was similar in these groups. Expression of olfactory and neurogenesis marker was higher in the olfactory neuroepithelium of the OT group than in the anosmia group without treatment. The mechanisms underlying olfactory regeneration might be related to early olfactory receptor stimulation, followed by neurotrophic factor stimulation of neuronal plasticity. Conclusion OT can improve olfactory function and accelerate olfactory recovery. The mechanisms underlying olfactory regeneration might be related to an initial stimulation of olfactory receptors followed by neurogenesis. Olfactory ensheathing cells might play an important role in olfactory regeneration following OT, based on the observed changes in messenger ribonucleic acid (mRNA) and protein expression, as well as the findings of the gene analysis.

Funder

Research Foundation of Korea(NRF) funded by the Ministry of Education

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology,Immunology and Allergy

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3