Impact of Middle Turbinectomy on Airflow to the Olfactory Cleft: A Computational Fluid Dynamics Study

Author:

Alam Suhyla1,Li Chengyu23,Bradburn Kathryn H.4ORCID,Zhao Kai25,Lee Thomas S.1

Affiliation:

1. Department of Otolaryngology – Head and Neck Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia

2. Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, Columbus, Ohio

3. Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania

4. Medical University of South Carolina, Charleston, South Carolina

5. Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio

Abstract

Background The impact of middle turbinate resection (MTR) on olfaction remains a point of debate in the current literature. Few studies have objectively evaluated olfactory cleft airflow following MTR; thus, the mechanism by which MTR may impact olfaction is poorly understood. It is not known whether the postsurgical changes in airway volume, flow, and resistance increase odorant transport or disrupt the patterns of normal airflow. Computational fluid dynamics can be used to study the nasal airway and predict responses to surgical intervention. Objective To evaluate the functional impact of MTR on nasal airflow, resistance, and olfaction. Methods Five maxillofacial computed tomography scans of patients without signs of significant sinusitis or nasal polyposis were used. Control models for each patient were compared to their corresponding model after virtual total MTR. For each model, nasal airway volume, nasal resistance, and air flow rate were determined. Odorant transport of 3 different odorants in the nasal cavity was simulated based on the computed steady airflow field. Results Total airflow significantly increased following bilateral MTR in all patient models ( P < .05). Consistent with our airflow results, we found a decrease in nasal resistance following MTR. MTR significantly increased area averaged flux to the olfactory cleft when compared to controls for phenylethyl alcohol (high-sorptive odorant). Results for carvone (medium sorptive) were similarly elevated. MTR impact on limonene, a low flux odorant, was equivocal. Conclusion MTR increases nasal airflow while decreasing the nasal resistance. Overall, olfactory flux increased for high sorptive (phenylethyl alcohol) and medium sorpitve (l-carvone) odorants. However, the significant variation observed in one of our models suggests that the effects of MTR on the nasal airflow and the resultant olfaction can vary between individuals based on individual anatomic differences.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology,Immunology and Allergy

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3